Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Future Cardiol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623957

RESUMEN

Background: In this study, we aim to discuss the long-term clinical outcomes of intravascular ultrasound imaging-guided percutaneous intervention (IVUS-PCI) versus angiography-guided percutaneous coronary intervention (PCI) in complex coronary lesions over a mean period of 2 years. Methods: A systematic search and meta-analysis were conducted to assess the efficacy of using intravascular ultrasound or optical coherence tomography guidance in coronary artery stenting compared to angiography. Results: A total of 11 randomized controlled trials with 6740 patients were included. For the primary outcome, a pooled analysis (3.2 vs 5.6%). For secondary outcomes, the risk was significantly low in image-guided percutaneous intervention compared with angiography. Conclusion: Intravascular imaging-guided PCI is significantly more effective than angiography-guided PCI in reducing the risk of target lesion revascularization, target vessel revascularization, cardiac death, major adverse cardiovascular events and stent thrombosis.

2.
Plant Cell Rep ; 43(3): 65, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341396

RESUMEN

Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.


Asunto(s)
Metales Pesados , Microplásticos , Humanos , Microplásticos/toxicidad , Suelo/química , Plásticos , Ecosistema , Metales Pesados/toxicidad , Productos Agrícolas
3.
Rice (N Y) ; 17(1): 6, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212485

RESUMEN

BACKGROUND: The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H2O2) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H2O2 signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.

4.
Sci Total Environ ; 912: 169420, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128670

RESUMEN

Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.


Asunto(s)
Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Microplásticos , Plásticos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Antibacterianos , Metales Pesados/toxicidad , Productos Agrícolas
5.
Plants (Basel) ; 12(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38068618

RESUMEN

Plants, being sessile, have developed complex signaling and response mechanisms to cope with biotic and abiotic stressors. Recent investigations have revealed the significant contribution of phytohormones in enabling plants to endure unfavorable conditions. Among these phytohormones, jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates (JAs), are of particular importance and are involved in diverse signal transduction pathways to regulate various physiological and molecular processes in plants, thus protecting plants from the lethal impacts of abiotic and biotic stressors. Jasmonic acid has emerged as a central player in plant defense against biotic stress and in alleviating multiple abiotic stressors in plants, such as drought, salinity, vernalization, and heavy metal exposure. Furthermore, as a growth regulator, JA operates in conjunction with other phytohormones through a complex signaling cascade to balance plant growth and development against stresses. Although studies have reported the intricate nature of JA as a biomolecular entity for the mitigation of abiotic stressors, their underlying mechanism and biosynthetic pathways remain poorly understood. Therefore, this review offers an overview of recent progress made in understanding the biosynthesis of JA, elucidates the complexities of its signal transduction pathways, and emphasizes its pivotal role in mitigating abiotic and biotic stressors. Moreover, we also discuss current issues and future research directions for JAs in plant stress responses.

6.
Environ Sci Pollut Res Int ; 30(51): 110047-110068, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37807024

RESUMEN

Due to sessile, plants are unable to avoid unfavorable environmental conditions which leads to inducing serious negative effects on plant growth, crop yield, and food safety. Instead, various approaches were employed to mitigate the phytotoxicity of these emerging contaminants from the soil-plant system. However, recent studies based on the exogenous application of ZnO NPs approve of their important positive potential for alleviating abiotic stress-induced phytotoxicity leads to ensuring global food security. In this review, we have comprehensively discussed the promising role of ZnO NPs as alone or in synergistic interactions with other plant growth regulators (PGRs) in the mitigation of various abiotic stresses, i.e., heavy metals (HMs), drought, salinity, cold and high temperatures from different crops. ZnO NPs have stress-alleviating effects by regulating various functionalities by improving plant growth and development. ZnO NPs are reported to improve plant growth by stimulating diverse alterations at morphological, physiological, biochemical, and ultrastructural levels under abiotic stress factors. We have explained the recent advances and pointed out research gaps in studies conducted in earlier years with future recommendations. Thus, in this review, we have also addressed the opportunities and challenges together with aims to uplift future studies toward effective applications of ZnO NPs in stress management.


Asunto(s)
Nanopartículas , Óxido de Zinc , Zinc , Óxido de Zinc/química , Nanopartículas/toxicidad , Estrés Fisiológico , Productos Agrícolas
7.
J Hazard Mater ; 458: 131906, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364434

RESUMEN

Plant yield is severely hampered by chromium (Cr) toxicity, affirming the urgent need to develop strategies to suppress its phyto-accumulation. Silicon dioxide nanoparticles (SiO2 NPs) have emerged as a provider of sustainable crop production and resistance to abiotic stress. But, the mechanisms by which seed-primed SiO2 NPs palliate Cr-accumulation and its toxic impacts in Brassica napus L. tissues remains poorly understood. To address this gap, present study examined the protective efficacy of seed priming with SiO2 NPs (400 mg/L) in relieving the Cr (200 µM) phytotoxicity mainly in B. napus seedlings. Results delineated that SiO2 NPs significantly declined the accumulation of Cr (38.7/35.9%), MDA (25.9/29.1%), H2O2 (27.04/36.9%) and O2• (30.02/34.7%) contents in leaves/roots, enhanced the nutrients acquisition, leading to improved photosynthetic performance and better plant growth. SiO2 NPs boosted the plant immunity by upregulating the transcripts of antioxidant (SOD, CAT, APX, GR) or defense-related genes (PAL, CAD, PPO, PAO and MT-1), GSH (assists Cr-vacuolar sequestration), and modifying the subcellular distribution (enhances Cr-proportion in cell wall), thereby confer tolerance to ultrastructural damages under Cr stress. Our first evidence to establish the Cr-detoxification by seed-primed SiO2 NPs in B. napus, indicated the potential of SiO2 NPs as stress-reducing agent for crops grown in Cr-contaminated areas.


Asunto(s)
Brassica napus , Antioxidantes/farmacología , Cromo/toxicidad , Peróxido de Hidrógeno , Estrés Oxidativo , Semillas/metabolismo , Dióxido de Silicio/farmacología
8.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047669

RESUMEN

Trichomes are common appendages originating and projecting from the epidermal cell layer of most terrestrial plants. They act as a first line of defense and protect plants against different types of adverse environmental factors. GL3/EGL3-GL1-TTG1 transcriptional activator complex and GIS family genes regulate trichome initiation through gibberellin (GA) signaling in Arabidopsis. Here, our novel findings show that TOE1/TOE2, which are involved in developmental timing, control the initiation of the main-stem inflorescence trichome in Arabidopsis. Phenotype analysis showed that the 35S:TOE1 transgenic line increases trichome density of the main-stem inflorescence in Arabidopsis, while 35S:miR172b, toe1, toe2 and toe1toe2 have the opposite phenotypes. Quantitative RT-PCR results showed that TOE1/TOE2 positively regulate the expression of GL3 and GL1. In addition, protein-protein interaction analysis experiments further demonstrated that TOE1/TOE2 interacting with GIS/GIS2/ZFP8 regulate trichome initiation in Arabidopsis. Furthermore, phenotype and expression analysis also demonstrated that TOE1 is involved in GA signaling to control trichome initiation in Arabidopsis. Taken together, our results suggest that TOE1/TOE2 interact with GIS to control trichome development in Arabidopsis. This report could provide valuable information for further study of the interaction of TOE1/TOE2 with GIS in controlling trichome development in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tricomas/genética , Tricomas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistemas de Información Geográfica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
9.
Plant Cell Physiol ; 64(6): 686-699, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036744

RESUMEN

Reactive oxygen species (ROS) are highly reactive molecules, generated by nicotinamide adenine dinucleotide phosphate oxidases encoded by respiratory burst oxidase homologs. The functions of the OsRbohs gene family in rice are diverse and poorly understood. OsRbohI was recently identified as a newly evolved gene in the rice OsRbohs gene family. However, the function of OsRbohI in regulating rice growth is not yet reported. In this study, our results indicate that knockout (KO) OsRbohI mutants showed significantly shorter shoot and primary roots, along with lower ROS content than the control lines, whereas the overexpression (OE) lines displayed contrasting results. Further experiments showed that the abnormal length of the shoot and root is mainly caused by altered cell size. These results indicate that OsRbohI regulates rice shoot and root growth through the ROS signal. More importantly, RNA-seq analysis and jasmonic acid (JA) treatment demonstrated that OsRbohI regulates rice growth via the JA synthesis and signaling pathways. Compared with the control, the results showed that the KO mutants were more sensitive to JA, whereas the OE lines were less sensitive to JA. Collectively, our results reveal a novel pathway in which OsRbohI regulates rice growth and development by affecting their ROS homeostasis through JA synthesis and signaling pathway.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Transducción de Señal , Crecimiento y Desarrollo , Regulación de la Expresión Génica de las Plantas
10.
Environ Sci Pollut Res Int ; 30(10): 26137-26149, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36350451

RESUMEN

The enormous use of metal-based nanoparticles (NPs) in different sectors may result in enhanced accumulation in agricultural soil, which could impose negative effects on crop productivity. Hence, strategies are needed to explore the mechanisms of copper oxide nanoparticle (CuO NP)-induced toxicity in crops. The present study aimed to investigate the involvement of ethylene in CuO NP-induced toxicity in rice seedlings. Here, our results indicate that 450 mg L-1 of CuO NPs induced toxic effects in rice seedlings. Thus, it was evidenced by the reduced plant biomass accumulation, enhanced oxidative stress indicators, and cellular ultrastructural damages. More importantly, the exogenous supply of ethylene biosynthesis and signaling antagonists cobalt (Co) and silver (Ag) respectively provided tolerance and improved the defense system of rice seedlings against CuO NP toxicity. The ethylene antagonists could significantly reduce the extent of ultrastructural and stomatal damage by controlling the ROS accumulation in rice seedlings under CuO NP stress. Furthermore, Co and Ag augmented the antioxidant defense system against CuO NP-induced toxicity. Contrary to that, all oxidative damage attributes were further enhanced exogenous application of ethylene biosynthesis precursor [1-aminocyclopropane-1-carboxylic acid (ACC)] in the presence of CuO NPs. In addition, ACC could increase the CuO NP-induced stomatal and ultrastructural damages by reducing the ROS-scavenging ability in rice seedlings. Taken together, these results indicate the involvement of ethylene in CuO NP-induced toxicity in rice seedlings.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oryza , Plantones , Cobre/química , Especies Reactivas de Oxígeno/farmacología , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Etilenos , Óxidos/farmacología
11.
Environ Pollut ; 315: 120390, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36244495

RESUMEN

Nanoparticles have emerged as cutting-edge technology for the improvement of crops yield and safe cultivation of agricultural plants, especially in peripheral areas impaired with toxic heavy metals including chromium (Cr). The uncontrolled release of Cr mainly from anthropogenic factors is substantially polluting the surrounding environment, thereby extensively accumulated in soil-plant system. The excessive Cr-accretion in plant tissues disturbed the morph-physiological, biochemical, cellular, metabolic and molecular processes, and impaired the plants functionality. Therefore, it is obligatory to restrict the accumulation and toxic effects of Cr in plant organs. Recent studies on metallic nanoparticles (MNPs) such as iron oxide, silicon dioxide, copper oxide and zinc oxide have approved their efficacy as potent pool to curb the Cr-induced phytotoxicities and improved the plant tolerance. MNPs attenuated the bioaccumulation and phytotoxicity of Cr by utilizing key mechanisms such as improved photosynthetic machinery, regulation of cellular metabolites, greater chelation capacity to bind with Cr, release of corresponding metallic ions, upsurge in the uptake of essential nutrients, activation of antioxidants (enzymatic and non-enzymatic), reduction in oxidative stress, and cellular injuries, thus improvement in plant growth performances. We have briefly discussed the current knowledge and research gaps in existing literature along with possible recommendations for future research. Overall, Cr-detoxification by MNPs may depends upon the target plant species, Cr speciation, plant growth stages (seedling, vegetative and ripening etc.), treatment methods (foliar spray, seed priming and nutrient solution etc.), type, size, dose and coating of applied MNPs, and conditions (hydroponic and soil environment etc.). This review would help plant scientists to develop MNPs based strategies such as nano-fertilizers to alleviate the Cr-accumulation and its toxic impacts. This may leads to safe and healthy food production. The review outcomes can provide new horizons for research in the applications of MNPs for the sustainable agriculture.


Asunto(s)
Nanopartículas del Metal , Contaminantes del Suelo , Cromo/toxicidad , Cromo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Antioxidantes/metabolismo , Estrés Oxidativo , Productos Agrícolas/metabolismo , Nanopartículas del Metal/toxicidad
12.
3 Biotech ; 12(6): 128, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35601642

RESUMEN

Excessive use of pesticides and mineral fertilizers poses a serious threat to ecoenvironment sustainability and human health. Nano pesticides or Nano fungicides have attained great attention in the field of agriculture due to their unique characteristics, by improving crop growth with enhancing pathogenesis-related defense system. However, there is a need to develop a sustainable mechanism for the synthesis of fungicides which replace the chemical pesticides to avoid their hazardous impact. Here in, Tamarix aphylla mediated CuO-Nanoparticles (NPs) were synthesized, characterized and their activity was evaluated under in-vitro and in-vivo conditions. The structural and elemental analysis of NPs were carried out by using X-ray powder diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), UV-visible spectrophotometer, Scanning electron microscope (SEM) and Transmission electron microscope (TEM). In the greenhouse, at an optimum concentration of 50 mg/L reduced disease severity very effectively and enhanced plant growth. Application of NPs also assisted in the induction of systemic response of defense-related genes in melon. Under In vitro condition at 100 mg/L significantly reduced mycelial growth (84.5%) by directly acting on the pathogenic cell wall. Our work confirmed that dosedependent concentration of T. aphylla extract based biological CuO-NPs enhance plant growth and help to effectively resist against F. oxysporum infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03189-0.

13.
Cureus ; 14(2): e22031, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35340497

RESUMEN

Objective The objective of this study was to interpret any rule of probiotics in the management of celiac disease and apply the results to improve the quality of life of patients with celiac disease if the result comes in favor of probiotics. Materials and methods It was a cross-sectional study conducted in the gastroenterology unit of Nishtar Medical University, Multan. A total of 170 children with celiac disease were enrolled in the study and divided into two groups (A and B) using a computer-generated table of random numbers. Group A was given only a gluten-free diet, while group B was given probiotics and a gluten-free diet. The efficacy of probiotics was measured in terms of reduction in stool frequency at the end of the 28 days of treatment. The data was recorded on the datasheet for every individual, and the statical analysis was performed using the Chi-square test. The patients were fully explained about the research purpose, and written consent was taken from them. Results The efficacy of probiotics in children with celiac disease was compared in both groups. Results showed a marked reduction in the frequency of stools to less than half, i.e., 90.59% (n=77) in group B and 63.53% (n=54) in group A. The Chi-Square test resulted in a p-value of 0.000027 showing a significant difference in both groups. Conclusion Probiotics are found to be highly efficient in terms of reduction in diarrhea in celiac disease. Probiotics will improve not only quality of life but also play an essential role in managing celiac disease.

14.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269875

RESUMEN

Abiotic stresses have already exhibited the negative effects on crop growth and development, thereby influencing crop quality and yield. Therefore, plants have developed regulatory mechanisms to adopt against such harsh changing environmental conditions. Recent studies have shown that zinc finger protein transcription factors play a crucial role in plant growth and development as well as in stress response. C2H2 zinc finger proteins are one of the best-studied types and have been shown to play diverse roles in the plant abiotic stress responses. However, the C2H2 zinc finger network in plants is complex and needs to be further studied in abiotic stress responses. Here in this review, we mainly focus on recent findings on the regulatory mechanisms, summarize the structural and functional characterization of C2H2 zinc finger proteins, and discuss the C2H2 zinc finger proteins involved in the different signal pathways in plant responses to abiotic stress.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Dedos de Zinc CYS2-HIS2/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico , Dedos de Zinc
15.
Cureus ; 14(11): e32047, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36600864

RESUMEN

One-lung ventilation (OLV) during video-assisted thoracoscopic surgery (VATS) can be accomplished through several different techniques, including bronchial advancement of an endotracheal tube (ETT), use of a double-lumen tube (DLT), or placement of an endobronchial blocker. In most cases, a DLT is a mainstay of isolating and ventilating a single lung during cardiothoracic procedures. The reasons to deploy a DLT over other techniques include ease of placement, less chance of malposition, quick placement time, and quality of lung deflation. However, this case report highlights the importance of a bronchial blocker in a patient where a double-lumen tube failed to ventilate the lungs. Briefly, this young female patient had a right thoracic mass associated with ipsilateral lung collapse and moderate pleural effusion. CT-guided biopsy was planned but was deferred by the radiologist, as the patient was unable to lie in a prone position. The case was then referred to the cardiothoracic surgeon who planned a right VATS and biopsy of the lesion. In the operation theater, after induction of anesthesia, the patient could not be ventilated through a DLT, and high peak airway pressures were encountered. Initially, a size 37 left-sided DLT was used, and subsequently, sizes 35, 32, and 28 were also tried, but all these attempts to ventilate the patient remained futile. A bronchoscopy was done, which did not show any abnormality in the airway. The surgery was postponed due to an inability to ventilate the patient with a double-lumen tube. After a repeat CT scan and draining of 9.3 liters of pleural effusion over a week, the patient was again scheduled for the same procedure but with a changed anesthetic plan. This time around, the anesthetic plan was implemented successfully using a bronchial blocker to isolate the right lung. The surgery went ahead, and the patient had an uneventful postoperative period. The anesthetic management of this patient presented a unique set of challenges, which are shared in this case report.

16.
J Hazard Mater ; 423(Pt A): 127021, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34488098

RESUMEN

It is widely known that cobalt (Co) stress adversely affects plant growth and biomass accumulation, posing serious threats to crop production and food security. Nanotechnology is an emerging field in crop sciences for its potential in improving crop production and mitigating various stresses. Although there have been several studies reporting the toxic effects of zinc oxide nanoparticles (ZnO NPs) on different crops, their role in ameliorating heavy metal toxicity are still poorly understood. This study aimed to investigate the beneficial effects of seed priming with ZnO NPs in mitigating the phytotoxicity induced by Co stress. Our results demonstrated that ZnO NPs significantly improved the plant growth, biomass, and photosynthetic machinery in maize under Co stress. The NPs priming reduced ROS and MDA accumulations in maize shoots. More importantly, ZnO NPs alleviated the toxic effects of Co by decreasing its uptake and conferred stability to plant ultra-cellular structures and photosynthetic apparatus. Furthermore, a higher accumulation of nutrient content and antioxidant enzymes were found in NPs-primed seedlings. Collectively, we provide first evidence to demonstrate the alleviation of Co toxicity via ZnO NPs seed priming in maize, thus, illustrating the potential role of ZnO NPs to be applied as a stress mitigation agent for the crops grown in Co contaminated areas to enhance crop growth and yield.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Cobalto/toxicidad , Raíces de Plantas/química , Semillas/química , Contaminantes del Suelo/análisis , Zea mays , Óxido de Zinc/toxicidad
17.
Cureus ; 13(11): e19281, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34877223

RESUMEN

Kartagener's syndrome is a rare autosomal recessive disorder characterized by the situs inversus, bronchiectasis, and chronic sinusitis. It is found in about half of the individuals with primary ciliary dyskinesia, a disorder of dynein arms in the cilia which renders the mucociliary apparatus inefficient. One of the manifestations of this disorder is the inability to clear secretions from the respiratory pathway leading to recurrent infections and their complications. We present a case of a 16-year-old female with the classical triad of Kartagener's syndrome who developed left-sided empyema thoracis and needed video-assisted thoracoscopic decortication for her condition.

18.
Ecotoxicol Environ Saf ; 226: 112844, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34619479

RESUMEN

Nowadays, the applications of engineered nanoparticles (ENPs) have been significantly increased, thereby negatively affecting crop production and ultimately contaminating the food chain worldwide. Zinc oxide nanoparticles (ZnO NPs) induced oxidative stress has been clarified in previous studies. But until now, it has not been investigated that how ethylene mediates or participates in ZnO NPs-induced toxicity and related cellular ultrastructural changes in rice seedlings. Here, we reported that 500 mg/L of ZnO NPs reduced the fresh weight (54.75% and 55.64%) and dry weight (40.33% and 47.83%) in shoot and root respectively as compared to control. Furthermore, ZnO NPs (500 mg/L) reduced chlorophyll content (72% Chla, 70% Chlb), induced the stomatal closure and ultrastructural damages by causing oxidative stress in rice seedlings. These cellular damages were significantly increased by exogenous applications of ethylene biosynthesis precursor (ACC) in the presence of ZnO NPs. In contrary, ZnO NPs induced damages on the above-mentioned attributes were reversed through the exogenous supply of ethylene signaling and biosynthesis antagonists such as silver (Ag) and cobalt (Co) respectively. Interestingly, ZnO NPs accelerate ethylene biosynthesis by up-regulating the transcriptome of ethylene biosynthesis responsive genes. The antioxidant enzymes activities and related gene expressions were further increased in ethylene signaling and biosynthesis associated antagonists (Ag and Co) treated seedlings as compared to sole ZnO NPs treatments. In contrary, the above-reported attributes were further decreased by ACC together with ZnO NPs. In a nutshell, ethylene effectively contributes in ZnO NPs induced toxicity and causing ultrastructural and stomatal damage in rice seedlings. Such findings could have potential implications in producing genetic engineered crops, which will be able to tolerate nanoparticles toxicity in the environment.


Asunto(s)
Nanopartículas , Oryza , Óxido de Zinc , Etilenos , Nanopartículas/toxicidad , Oryza/genética , Estrés Oxidativo , Raíces de Plantas , Plantones , Óxido de Zinc/toxicidad
19.
Plant Physiol Biochem ; 166: 1001-1013, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34271533

RESUMEN

Chromium (Cr) phytotoxicity affirmed the need of mitigation strategies to remediate polluted soils and restricts its accumulation in the food chains. Salicylic acid (SA) and silicon (Si) play pivotal roles in stimulating the plant performance and stress resilience. So far, their interactive effects against Cr-phytotoxicities are less known. Thus, we evaluated the beneficial roles of alone or/and combine applications of SA and Si in mitigating the toxic effects of Cr in the leaves and roots of rice (Oryza sativa) seedlings. Results indicated that SA (10 µM) and/or Si (5 µM) markedly retrieved the Cr (100 µM) induced toxicities by minimizing the Cr-accretion in both leaves and roots, enhancing the performance of light harvesting pigments (total chlorophylls and carotenoids), water retention and accumulation of osmolytes (water-soluble protein and total soluble sugars) and ultimately improved the growth and biomass. Additionally, SA and/or Si maintained the ionic balance by enhancing the nutrients transport, upregulated the ascorbate-glutathione (AsA-GSH) cycle enzymes, minimized the extra accumulation of reactive oxygen species (ROS) (H2O2 and O2•‒), malondialdehyde (MDA), recovered the membrane stability and damages in cellular ultrastructure in Cr-stressed rice plants. Overall findings suggested that SA underpins Si in mitigating the Cr-induced phytotoxicities on the above-reported parameters and combined applications of SA and Si were more effective than alone treatments. The uptake or cellular accumulation of Cr, osmoprotectants level and antioxidant defense system against oxidative stress can be considered as key toxicity biomarkers for the safe cultivation of rice in Cr-contaminated soils.


Asunto(s)
Antioxidantes , Oryza , Cromo/toxicidad , Homeostasis , Peróxido de Hidrógeno , Estrés Oxidativo , Raíces de Plantas , Ácido Salicílico/farmacología , Silicio/farmacología
20.
Kidney Int Rep ; 6(4): 962-975, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33912746

RESUMEN

INTRODUCTION: The creatinine-based Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) estimated glomerular filtration rate (eGFR) equation was calibrated for the general Pakistan population (eGFRcr-PK) to eliminate bias and improve accuracy. Cystatin C-based CKD-EPI equations (eGFRcys and eGFRcr-cys) have not been assessed in this population, and non-GFR determinants of cystatin C are unknown. METHODS: We assessed eGFRcys, eGFRcr-cys, and non-GFR determinants of cystatin C in a cross-sectional study of 557 participants (≥40 years of age) from Pakistan. We compared bias (median difference in measured GFR [mGFR] and eGFR), precision (interquartile range [IQR] of differences), accuracy (percentage of eGFR within 30% of mGFR), root mean square error (RMSE), and classification of mGFR <60 ml/min/1.73 m2 (area under the receiver operating characteristic curve [AUC] and net reclassification index [NRI]) among eGFR equations. RESULTS: We found that eGFRcys underestimated mGFR (bias, 12.7 ml/min/1.73 m2 [95% confidence interval {CI} 10.7-15.2]). eGFRcr-cys did not improve performance over eGFRcr-PK in precision (P = 0.52), accuracy (P = 0.58), or RMSE (P = 0.49). Results were consistent among subgroups by age, sex, smoking, body mass index (BMI), and eGFR. NRI was 7.31% (95% CI 1.52%-13.1%; P < 0.001) for eGFRcr-cys versus eGFRcr-PK, but AUC was not improved (0.92 [95% CI 0.87-0.96] vs. 0.90 [95% CI 0.86-0.95]; P = 0.056). Non-GFR determinants of higher cystatin C included male sex, smoking, higher BMI and total body fat, and lower lean body mass. CONCLUSION: eGFRcys underestimated mGFR in South Asians and eGFRcr-cys did not offer substantial advantage compared with eGFRcr-PK. Future studies are warranted to better understand the large bias in eGFRcys and non-GFR determinants of cystatin C in South Asians.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...